Modeling Multivariate Interest Rates using Time-Varying Copulas and Reducible Stochastic Differential Equations
نویسندگان
چکیده
We propose a new approach for modeling non-linear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of non-linear SDEs that are reducible to Ornstein-Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a non-linear transformation function. The main advantage of this approach is that these SDEs can account for non-linear features, observed in short-term interest rate series, while at the same time leading to exact discretisation and closed form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed form likelihood functions. The statistical properties of the two processes are investigated. In order to obtain more flexible functional form over time, we allow the transformation function to be time-varying. Results from our study of US and UK short term interest rates suggest that the new models outperform existing parametric models with closed form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying Symmetrised JoeClayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. ∗University of Liverpool. Corresponding author: Management School, Chatham Street, Liverpool, L69 7ZH, UK, Tel: +44-151-795-3122, Fax: +44-151-795-3005, Email: [email protected] (Ruijun Bu). †GREQAM, Marseille ‡Queen’s University, Belfast §GREQAM, Marseille and CNRS 1 ha ls hs -0 04 08 01 4, v er si on 1 15 N ov 2 00 9
منابع مشابه
Simulating Exchange Rate Volatility in Iran Using Stochastic Differential Equations
The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...
متن کاملModeling and prediction of time-series of monthly copper prices
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملApplication of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit
In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...
متن کامل